һ⣺
α߳x=(13)ô·Сε½ǣt=arccos(2/(13))
·СұߵĽΪ.֤cos cos t
½Ϊ sСҶɵ
x/sin(t)=(13)/sin x/sins=(5)/cos
ɴ˿ɵ
sin(s)/sin(t)=(13/5)cot()ʽ *
ԴҶ
sin(s)/sin(t)=15(13)/[21(5)]
̿ɵcot()=5/7
Ӷcos =5/(74).
cos cos t.
ġԽⷨǣߵĶ㣬ӶõһΡ֪߳
Ҷɵáʽ**
СεϷǷֱΪts뷮ڵtͬ
ǰƿԵõ롰ʽ*һĹʽҲs t ĺ档
桰ʽ*롰ʽ**ɵһη̣δ֪\(u=\sin^2 t\))
ܷû
k=7(5)/(5(13))
\(\frac{18\sqrt{26}}{17\sqrt{10}}\sqrt{1-u}\sqrt{1-k^2u}=(1-u)+(81\times 26/2890)(1-k^2u)-
(\frac{9\sqrt{26}}{17\sqrt{10}}k-1)^2u\),
ƽɵһԪη̡Ѿ߲ȣԲǺʽн⡣
-- -- --
һ·ڵƵ
θߵĽΪ(16*sqrt(13)*cos(t), 16*sqrt(13)*sin(t))/7ƺԡ
ߵĽǣ(13)*cos(t)(13)*sin(t))
ڶȷʵؼBCOAĽDOľ롣x=|OD|
Σx/(3-x)=3/4.ɵx=9/7
ľͼ
·=412/7/2
Բ9
=24/7+ 9 /4-39/7/2
α߳x=(13)ô·Сε½ǣt=arccos(2/(13))
·СұߵĽΪ.֤cos cos t
½Ϊ sСҶɵ
x/sin(t)=(13)/sin x/sins=(5)/cos
ɴ˿ɵ
sin(s)/sin(t)=(13/5)cot()ʽ *
ԴҶ
sin(s)/sin(t)=15(13)/[21(5)]
̿ɵcot()=5/7
Ӷcos =5/(74).
cos cos t.
ġԽⷨǣߵĶ㣬ӶõһΡ֪߳
Ҷɵáʽ**
СεϷǷֱΪts뷮ڵtͬ
ǰƿԵõ롰ʽ*һĹʽҲs t ĺ档
桰ʽ*롰ʽ**ɵһη̣δ֪\(u=\sin^2 t\))
ܷû
k=7(5)/(5(13))
\(\frac{18\sqrt{26}}{17\sqrt{10}}\sqrt{1-u}\sqrt{1-k^2u}=(1-u)+(81\times 26/2890)(1-k^2u)-
(\frac{9\sqrt{26}}{17\sqrt{10}}k-1)^2u\),
ƽɵһԪη̡Ѿ߲ȣԲǺʽн⡣
-- -- --
һ·ڵƵ
θߵĽΪ(16*sqrt(13)*cos(t), 16*sqrt(13)*sin(t))/7ƺԡ
ߵĽǣ(13)*cos(t)(13)*sin(t))
ڶȷʵؼBCOAĽDOľ롣x=|OD|
Σx/(3-x)=3/4.ɵx=9/7
ľͼ
·=412/7/2
Բ9
=24/7+ 9 /4-39/7/2
���༭ʱ��: 2023-09-06 18:35:47