2. GCD(2^m-1, 2^n-1) = s > 1.
s+1 2^m, s-1 2^n. Ϊʲô
s = 2^a-1 = 2^b + 1, 2^a = 2*(2^(b-1)+1)
b = 1 s = 3.
3 2^m-1=2^(2*k+1)-1 = 2*4^k-1.
ùɷ֤ 3 2*4^k-1
k = 1 Ȼ
ٶ 3 2*4^t-1
2*4^(t+1)-1 = 2*4*4^t-4+3 = 4*2*4^t-1)+3
ìܡ
ȡ m=112^11 - 1 = 2047 = 23x 89;
89 + 1 = 90 2 κδ˷
s+1 2^m, s-1 2^n. Ϊʲô
s = 2^a-1 = 2^b + 1, 2^a = 2*(2^(b-1)+1)
b = 1 s = 3.
3 2^m-1=2^(2*k+1)-1 = 2*4^k-1.
ùɷ֤ 3 2*4^k-1
k = 1 Ȼ
ٶ 3 2*4^t-1
2*4^(t+1)-1 = 2*4*4^t-4+3 = 4*2*4^t-1)+3
ìܡ
ȡ m=112^11 - 1 = 2047 = 23x 89;
89 + 1 = 90 2 κδ˷
���༭ʱ��: 2023-08-31 03:19:22