[文集] [专题] [检索] [独立评论] [海阔天空] [矛盾江湖] [全版论坛]


所跟帖: ÈüÀ¥ ¸ÄÒ»ÏÂÆ½ÕýÏÈÉúµÄ¡¶ÈÕ±¾ÖÐѧ¾ºÈüÌâ¡·   2023-08-10 12:49:08  


作者: ½Æß   »»¸ö·½·¨½âƽ½ÌÊÚµÄÌâ 2023-08-11 06:41:18  [点击:1759]


ϵ

ij ƽ޹ص ƽһp Ψһһʵxy ʹ p = x i + y j . ƽѡһOΪԭ㣬 ƽһP p = OP ɴ˲ ʵ xy ǵP꣬ ԭO ƽi ֱ߳Ϊxᣬ ԭO ƽj ֱ߳Ϊyᣬ͹һϵ עڿͨԱ任ֱϵΪķϵ һԪԷ̴ƽϵһֱߣ һֱҲһԪԷʾ

صƽڵ ij λ DΪԭ㣬i ƽεĵױߣ ָ\( C \) j ƽ\( AD \) ָ\( A\) i j ֮ļнΪ\( \alpha\) ϵ£ ƽһ \( (X,Y) \)ԭƽ Ҷ \[ X^2 + Y^2 + 2XY \cos\alpha \].
ټٶ εױ߳Ϊ2 \( ED\)Ϊ\( m\)Ǿꡣ\( D00\)Ȼġ
\( A(0, 1+m) \);
\( B( -1,0) \);
\( C( 1,0) \);
\( E( 0,m) \);

\( F \)ʲôעֱ\( BE\)\( AC\)Ľ㡣 ֻҪֱ\( BE\)\( AC\)ӦĶԪԷͿˡ

ֱ\( BE\)ĽؾʽΪ\[ -x + \frac{y}{m} = 1;\] \[ y = m ( 1 + x), \] 뵽 ֱ\( AC\)ķ\[ x + \frac{y}{1+m} = 1, \] \[ x = \frac{1}{2m + 1}, y = m + \frac{m}{2m + 1} .\]
\[ F(\frac{1}{2m + 1},m + \frac{m}{2m + 1} )\].

棬 ø꣬ ǰᵽľƽĹʽ г\( AF= FE \)ķ̣ \( \alpha \) ֵ

\( Ax Ay \)ֱʾ \(AF\) \(x y\)ͶӰ\(Ax= 1/(2m +1)\), \( Ay= m + m/(2m + 1)-1-m =-(m+1)/(2m +1)\).
ͬ\( Ex Ey \)ֱʾ \(EF\) \(x y\)ͶӰ\( Ex= 1/(2m +1)\), \( Ey= m + m/(2m + 1)-m =m/(2m +1)\)

Ϊ\( AF EF\) ȣ ķ̣\[Ax^2 + Ay^2 + 2AxAy\cos\alpha = Ex^2 + Ey^2 + 2ExEy\cos\alpha \] \( Ax = Ex = 1/(2m + 1)\), ȥƽ \[ (Ay + Ey)(Ay - Ey) = 2Ax(Ey - Ay)\cos \alpha \]\( Ay + Ey = - 1/(2m+1) = -Ax\), \( 2\cos\alpha =1\), \( \alpha = \)60°.
���༭ʱ��: 2023-08-11 06:45:31

加跟贴

笔名:     新网友请先注册笔名 密码:
主题: 进文集
内容: