һ۵Ļع
ǰһ˸еһۡΪ˷ۣҳΪ˫ۡһ汾¡
м̳ڸ̵ϰΪÿͬĺеһһ˿ԤȲ֪еǮȡһֻΪƷݳ齱齱ߴ鵽ĺ۲쵽еĽΪ \(x>0\) Ԫ֮һζѡᡪȿԱҲѵֵĽ黹ϰ壬ȡϰһֻ
λ˿ƶϰֻҪôװ \(x_H=2x\) ԪҪôװ \(x_L=x/2\) ԪٶֿԳֵļʷֱΪ \(\nu_1\) \(\nu_2\)ôúֵΪ
\[
E=\nu_1\cdot x_H+\nu_2\cdot x_L=\left(2\nu_1+\frac{\nu_2}{2}\right)x
\label{av}
\tag{1}
\]
\eqref{av} ʽֵ֮Сѳ鵽 \(x\) Ԫ˿ȻԸⱣѾֵĽ뿪̳ \(E > x\)ϣһϰ彻ףԻø档
ڹ˿Ͷϰķװһ֪ҵһֻԼȡģڡ֪֮Ļֻؼһֻװ \(x_H=2x\) Ԫļʸװ \(x_L=x/2\) Ԫļȵģ\(\nu_1=\nu_2=\frac{1}{2}\)Щֵ \eqref{av} ʽϰĺнֵΪ \(E=5x/4\)
˶Щǣֵ \(E=5x/4\) Ǵѳ鵽ֵĽ \(x\)齱øԶǻġͬĺΪƫƫԼȡߵһֻĽСϰĽԤֵأûDZ˵ĺãϾѽ-_- ˺Ϊ \(E=5x/4\) ӳʵֵֵΪƶһжԣľȻڳ齱˻档
Ҷ˹
Ϊ˽һۣǰһѭ Christensen Utts ʮǰĽ飬ֵ \(E\) ЩҶ˹۵˼·£˿۲쵽ȡĺ \(x\) ԪӦ \(P(1|x)\) \(P(2|x)\) ֱ \eqref{av} ʽԭ \(x\) صֵ \(\nu_1=\frac{1}{2}\) \(\nu_2=\frac{1}{2}\)ʹøֵ֮
\[
E'=P(1|x)\cdot x_H+P(2|x)\cdot x_L
\label{bv}
\tag{2}
\]
ӽʵͨԱҶ˹ʽķӷĸԼ֣ѿʽijǸIJ \(\lambda(x)\) ̻
\[
P(1|x)=\frac{\lambda(x)}{1+\lambda(x)},~~~~~~P(2|x)=\frac{1}{1+\lambda(x)}
\label{px}
\tag{3}
\]
ע۵ֵ \(\nu_1=\nu_2=\frac{1}{2}\) Ӧڳֵ \(\lambda(x)\equiv 1\)ǰڹģʱҪԱġ
ǰһһģͣøģʵʼ \(\lambda(x)\)н \(x\in [x_*,2x^*]\) ϶ķֶγֵֶεĶϵ \(2x_* < x^*\) ֮
\[
\lambda(x)=\left\{\begin{array}{ll}
\infty, & x_* \le x < 2x_*
\\
2, & 2x_*\le x \le x^*
\\
0, & x^*< x \le 2x^*
\end{array}\right.
\label{lambda}
\tag{4}
\]
Щ齱ڵһй۲쵽Ľһֵ \(x^*\)˿ͳ鵽Ľڸֵ \(x>x^*\) ʱ\eqref{bv} ʽԤ \(E'=x_L=x/2 \) Сڹ˿ѳ鵽Ľ \(x\)齱Ӧþաֹͣףѵֵĺ
֮˿ͳ鵽ĽСֵ\(x < x^*\)кԤڻΪ \(E'=x_H=2x\)Ϊ \(E'=2x_H/3+x_L/3=3x/2\)߾ѳ鵽 \(x\)ʴʱ齱ӦϡϰнסǣҶ˹µֵ \eqref{bv} ۣҲȿֱֵ̰Ӽܷӳʵڴ˻ľߵȻӿЧ
Է
ֵĸĽǶԡĶ֡˷¶ϢмӹóġͨҶ˹ \eqref{av} Ȩ \(\nu_1,\nu_2\) ֵʹΪۣԴΪݵľΪɿ
ӹñ˷¶Ϣǹµһ棻һ棬ͨԼֵȡȣĵҲڲĹиӵӦ֡ԶھΪԶ˷жǴģͬʱҲڿҵȷȵǸ治ȣ̰ʢУĻɢЩ۸еǸڿսݵڶսڽ˹ȻݵԤϵ㡪ǰڴյİǰҵ˹ΣѸٵԼһԾΪ缶䣬緽ڿӢ¿С̫شΣǰſ£ҲֱΣѷʱ˸ŵõΪӢۡλ˺ʷ漣һλӢۣ˹ǵ͡˵ġԷֿɣԷǧӡڿ˵Լļֵȡ֮ŷΪɶս
ͼͨѧ조ĵֵ \eqref{av} Ӱ죨Ӱ쵽ߣʱҪIJǶⲿ \(\nu_1,\nu_2\) бҶ˹Ҫ \(x_H,x_L\) ͡齱߱ˣԵֵЧáʾ Bob Agnew ʿĽ顪ǮƲ \(w\) Чú \(u(w)\) ˫۵УЧֵֵ \eqref{av}
\[
E''=\nu_1\cdot u(w_0+2x)+\nu_2\cdot u(w_0+x/2)=\frac{1}{2}u(w_0+2x)+\frac{1}{2}u(w_0+x/2)
\label{eu}
\tag{5}
\]
ʽУ\(w_0\) dz齱˵ijʼƲ\(x\) һ۲쵽Ľע \(E''\) dz齱˸ϰ彻ЧԤڣһԤڴڳ鵽ĵһЧã \(E'' > u(w_0+x)\)ô齱Ӧøϰ彻 \(E'' < u(w_0+x)\)齱Ӧһֻɴ˿֪ǷѡĽбʽţ
\[
\Delta(x)=\frac{1}{2}u(w_0+2x)+\frac{1}{2}u(w_0+x/2)-u(w_0+x)
\label{delta}
\tag{6}
\]
ġɾѧ
Ϊ˱ļòӲͷƤƽǰŪ淶ʹһЩѧ-_- ѧٶÿԴƸ \(w>0\) ԼصЧú \(u(w)\)ͬһǮͬˣӺؤǻõҸͨDzͬġһꤵ˺·ǮЧȻԶڱȶǴġ߾˵ѹͲϡȥԼǮ-_- ǣ˻ǸɵйߣֻҪ㲻ΥԣǮܹƣ֮Чú \(u(w)\) ӦΪƸ \(w\) ĵ\(u'(w)>0\)⣬ѧһٶЧӦĴڣ༴ܸIJƸ㣬λƸȴŲƸIJϻ۱ԽԽСѧʣҪ \(u''(w) \le 0\)Щʶÿˡ
Чú \(u(w)\) һǼԷյijܶȡٶλIJƲ \(w\) \(w\to w+\epsilon\) \(\epsilon\) ijз̣ǿͨЧúŶֵ \(E[u(w+\epsilon)]\) 塰ˮ\(\pi\)
\[
u(w-\pi)=E[u(w+\epsilon)]
\label{pr}
\tag{7}
\]
Ŷľֱֵȡ \(E[\epsilon]=0, ~E[\epsilon^2]=\sigma^2\) \eqref{pr} ʽ̩չƵͽף
\[
u(w)-u'(w)\pi \approx u(w)+u'(w)E[\epsilon]+\frac{1}{2}u''(w)E[\epsilon^2]~\Rightarrow~\pi\approx -\frac{\sigma^2\cdot u''(w)}{2u'(w)}
\]
ʽܡ
\[
\alpha(w)=-\frac{u''(w)}{u'(w)}
\label{ra}
\tag{8}
\]
ѿ\(\alpha(w)\) Чú \(u(w)\) ͼľ̶ֲȡ
塢˫۵ľѧ
ðΡ
1ܺ㣬\(\alpha(w)\equiv 0\) ʱɳַ \(u''(w)=0\) Чú \(u(w)=a w+b\)ͨıƸļλʼƸ \(w_0\) \(a=1,~b=0\)һε \(u(w)=w\)Чúֵ֮ƽӹΪ \eqref{av} Խۡ
2ܺ \(\alpha(w)\) ȡ㳣 \(k > 0\)ʱ \(u''(w)=-ku'(w)\) ̺ \(u'(w)=ae^{-k w}\) \(u(w)=-\frac{a}{k}e^{-k w}+b\)бʽ \eqref{delta}
\[
\begin{array}{l}
\displaystyle
\Delta(x)=-\frac{ae^{-k(w_0+x/2)}}{2k}\left[e^{-3kx/2}+1-2 e^{-kx/2}\right]
\\
\displaystyle~~~~~~~~~
=\frac{ae^{-k(w_0+x/2)}}{2k}\left(1-e^{-kx/2}\right)\left(e^{-kx/2}+\frac{\sqrt{5}+1}{2}\right)
\left(e^{-kx/2}-\frac{\sqrt{5}-1}{2}\right)
\end{array}
\]
\(0< e^{-k x/2} < 1\)ʽһӾΪһŽ \(e^{-kx/2} > (\sqrt{5}-1)/2\approx 0.618\) \(e^{-kx/2} < (\sqrt{5}-1)/2\) һ֪齱߹۲쵽һĽ \(x\) һֵ
\[
x^*=-\frac{2}{k}\log\frac{\sqrt{5}-1}{2}
\label{xstar}
\tag{9}
\]
\(x > x^*\) ʱ \(e^{-kx/2} < \frac{\sqrt{5}-1}{2}\) \(\Delta(x)<0\)齱Ӧáþա鵽ֵĺ \(x < x^*\) ʱӦáϡϰһֻͨѡʵЧúһۣóˣЧãֵĺ㡣
<b>
ܰ۵۲ӣ۵ĽȤڹ˵ġ֪֪ս֪ˡȻָǴӲĶϢмӹ֪˵Լļֵȡ
ǰһ˸еһۡΪ˷ۣҳΪ˫ۡһ汾¡
м̳ڸ̵ϰΪÿͬĺеһһ˿ԤȲ֪еǮȡһֻΪƷݳ齱齱ߴ鵽ĺ۲쵽еĽΪ \(x>0\) Ԫ֮һζѡᡪȿԱҲѵֵĽ黹ϰ壬ȡϰһֻ
λ˿ƶϰֻҪôװ \(x_H=2x\) ԪҪôװ \(x_L=x/2\) ԪٶֿԳֵļʷֱΪ \(\nu_1\) \(\nu_2\)ôúֵΪ
\[
E=\nu_1\cdot x_H+\nu_2\cdot x_L=\left(2\nu_1+\frac{\nu_2}{2}\right)x
\label{av}
\tag{1}
\]
\eqref{av} ʽֵ֮Сѳ鵽 \(x\) Ԫ˿ȻԸⱣѾֵĽ뿪̳ \(E > x\)ϣһϰ彻ףԻø档
ڹ˿Ͷϰķװһ֪ҵһֻԼȡģڡ֪֮Ļֻؼһֻװ \(x_H=2x\) Ԫļʸװ \(x_L=x/2\) Ԫļȵģ\(\nu_1=\nu_2=\frac{1}{2}\)Щֵ \eqref{av} ʽϰĺнֵΪ \(E=5x/4\)
˶Щǣֵ \(E=5x/4\) Ǵѳ鵽ֵĽ \(x\)齱øԶǻġͬĺΪƫƫԼȡߵһֻĽСϰĽԤֵأûDZ˵ĺãϾѽ-_- ˺Ϊ \(E=5x/4\) ӳʵֵֵΪƶһжԣľȻڳ齱˻档
Ҷ˹
Ϊ˽һۣǰһѭ Christensen Utts ʮǰĽ飬ֵ \(E\) ЩҶ˹۵˼·£˿۲쵽ȡĺ \(x\) ԪӦ \(P(1|x)\) \(P(2|x)\) ֱ \eqref{av} ʽԭ \(x\) صֵ \(\nu_1=\frac{1}{2}\) \(\nu_2=\frac{1}{2}\)ʹøֵ֮
\[
E'=P(1|x)\cdot x_H+P(2|x)\cdot x_L
\label{bv}
\tag{2}
\]
ӽʵͨԱҶ˹ʽķӷĸԼ֣ѿʽijǸIJ \(\lambda(x)\) ̻
\[
P(1|x)=\frac{\lambda(x)}{1+\lambda(x)},~~~~~~P(2|x)=\frac{1}{1+\lambda(x)}
\label{px}
\tag{3}
\]
ע۵ֵ \(\nu_1=\nu_2=\frac{1}{2}\) Ӧڳֵ \(\lambda(x)\equiv 1\)ǰڹģʱҪԱġ
ǰһһģͣøģʵʼ \(\lambda(x)\)н \(x\in [x_*,2x^*]\) ϶ķֶγֵֶεĶϵ \(2x_* < x^*\) ֮
\[
\lambda(x)=\left\{\begin{array}{ll}
\infty, & x_* \le x < 2x_*
\\
2, & 2x_*\le x \le x^*
\\
0, & x^*< x \le 2x^*
\end{array}\right.
\label{lambda}
\tag{4}
\]
Щ齱ڵһй۲쵽Ľһֵ \(x^*\)˿ͳ鵽Ľڸֵ \(x>x^*\) ʱ\eqref{bv} ʽԤ \(E'=x_L=x/2 \) Сڹ˿ѳ鵽Ľ \(x\)齱Ӧþաֹͣףѵֵĺ
֮˿ͳ鵽ĽСֵ\(x < x^*\)кԤڻΪ \(E'=x_H=2x\)Ϊ \(E'=2x_H/3+x_L/3=3x/2\)߾ѳ鵽 \(x\)ʴʱ齱ӦϡϰнסǣҶ˹µֵ \eqref{bv} ۣҲȿֱֵ̰Ӽܷӳʵڴ˻ľߵȻӿЧ
Է
ֵĸĽǶԡĶ֡˷¶ϢмӹóġͨҶ˹ \eqref{av} Ȩ \(\nu_1,\nu_2\) ֵʹΪۣԴΪݵľΪɿ
ӹñ˷¶Ϣǹµһ棻һ棬ͨԼֵȡȣĵҲڲĹиӵӦ֡ԶھΪԶ˷жǴģͬʱҲڿҵȷȵǸ治ȣ̰ʢУĻɢЩ۸еǸڿսݵڶսڽ˹ȻݵԤϵ㡪ǰڴյİǰҵ˹ΣѸٵԼһԾΪ缶䣬緽ڿӢ¿С̫شΣǰſ£ҲֱΣѷʱ˸ŵõΪӢۡλ˺ʷ漣һλӢۣ˹ǵ͡˵ġԷֿɣԷǧӡڿ˵Լļֵȡ֮ŷΪɶս
ͼͨѧ조ĵֵ \eqref{av} Ӱ죨Ӱ쵽ߣʱҪIJǶⲿ \(\nu_1,\nu_2\) бҶ˹Ҫ \(x_H,x_L\) ͡齱߱ˣԵֵЧáʾ Bob Agnew ʿĽ顪ǮƲ \(w\) Чú \(u(w)\) ˫۵УЧֵֵ \eqref{av}
\[
E''=\nu_1\cdot u(w_0+2x)+\nu_2\cdot u(w_0+x/2)=\frac{1}{2}u(w_0+2x)+\frac{1}{2}u(w_0+x/2)
\label{eu}
\tag{5}
\]
ʽУ\(w_0\) dz齱˵ijʼƲ\(x\) һ۲쵽Ľע \(E''\) dz齱˸ϰ彻ЧԤڣһԤڴڳ鵽ĵһЧã \(E'' > u(w_0+x)\)ô齱Ӧøϰ彻 \(E'' < u(w_0+x)\)齱Ӧһֻɴ˿֪ǷѡĽбʽţ
\[
\Delta(x)=\frac{1}{2}u(w_0+2x)+\frac{1}{2}u(w_0+x/2)-u(w_0+x)
\label{delta}
\tag{6}
\]
ġɾѧ
Ϊ˱ļòӲͷƤƽǰŪ淶ʹһЩѧ-_- ѧٶÿԴƸ \(w>0\) ԼصЧú \(u(w)\)ͬһǮͬˣӺؤǻõҸͨDzͬġһꤵ˺·ǮЧȻԶڱȶǴġ߾˵ѹͲϡȥԼǮ-_- ǣ˻ǸɵйߣֻҪ㲻ΥԣǮܹƣ֮Чú \(u(w)\) ӦΪƸ \(w\) ĵ\(u'(w)>0\)⣬ѧһٶЧӦĴڣ༴ܸIJƸ㣬λƸȴŲƸIJϻ۱ԽԽСѧʣҪ \(u''(w) \le 0\)Щʶÿˡ
Чú \(u(w)\) һǼԷյijܶȡٶλIJƲ \(w\) \(w\to w+\epsilon\) \(\epsilon\) ijз̣ǿͨЧúŶֵ \(E[u(w+\epsilon)]\) 塰ˮ\(\pi\)
\[
u(w-\pi)=E[u(w+\epsilon)]
\label{pr}
\tag{7}
\]
Ŷľֱֵȡ \(E[\epsilon]=0, ~E[\epsilon^2]=\sigma^2\) \eqref{pr} ʽ̩չƵͽף
\[
u(w)-u'(w)\pi \approx u(w)+u'(w)E[\epsilon]+\frac{1}{2}u''(w)E[\epsilon^2]~\Rightarrow~\pi\approx -\frac{\sigma^2\cdot u''(w)}{2u'(w)}
\]
ʽܡ
\[
\alpha(w)=-\frac{u''(w)}{u'(w)}
\label{ra}
\tag{8}
\]
ѿ\(\alpha(w)\) Чú \(u(w)\) ͼľ̶ֲȡ
塢˫۵ľѧ
ðΡ
1ܺ㣬\(\alpha(w)\equiv 0\) ʱɳַ \(u''(w)=0\) Чú \(u(w)=a w+b\)ͨıƸļλʼƸ \(w_0\) \(a=1,~b=0\)һε \(u(w)=w\)Чúֵ֮ƽӹΪ \eqref{av} Խۡ
2ܺ \(\alpha(w)\) ȡ㳣 \(k > 0\)ʱ \(u''(w)=-ku'(w)\) ̺ \(u'(w)=ae^{-k w}\) \(u(w)=-\frac{a}{k}e^{-k w}+b\)бʽ \eqref{delta}
\[
\begin{array}{l}
\displaystyle
\Delta(x)=-\frac{ae^{-k(w_0+x/2)}}{2k}\left[e^{-3kx/2}+1-2 e^{-kx/2}\right]
\\
\displaystyle~~~~~~~~~
=\frac{ae^{-k(w_0+x/2)}}{2k}\left(1-e^{-kx/2}\right)\left(e^{-kx/2}+\frac{\sqrt{5}+1}{2}\right)
\left(e^{-kx/2}-\frac{\sqrt{5}-1}{2}\right)
\end{array}
\]
\(0< e^{-k x/2} < 1\)ʽһӾΪһŽ \(e^{-kx/2} > (\sqrt{5}-1)/2\approx 0.618\) \(e^{-kx/2} < (\sqrt{5}-1)/2\) һ֪齱߹۲쵽һĽ \(x\) һֵ
\[
x^*=-\frac{2}{k}\log\frac{\sqrt{5}-1}{2}
\label{xstar}
\tag{9}
\]
\(x > x^*\) ʱ \(e^{-kx/2} < \frac{\sqrt{5}-1}{2}\) \(\Delta(x)<0\)齱Ӧáþա鵽ֵĺ \(x < x^*\) ʱӦáϡϰһֻͨѡʵЧúһۣóˣЧãֵĺ㡣
<b>
ܰ۵۲ӣ۵ĽȤڹ˵ġ֪֪ս֪ˡȻָǴӲĶϢмӹ֪˵Լļֵȡ
���༭ʱ��: 2022-08-13 11:52:51