[文集] [专题] [检索] [独立评论] [海阔天空] [矛盾江湖] [全版论坛]


作者: ¼¦Í·Èâ   ÓÉ¡°¾ùÖµ¡±Òý·¢µÄÒ»¸öÑðÃý 2022-08-08 10:20:20  [点击:1707]
ܵɷֹ֡󣬰ţǼ⣬صʵζһСڻ⡣

ȶһ֮ǰعˡΪ̽ԤСˮʡĿɲ壬Ӻ½ѸһȤʵõķֽȡijһصʷϵ \(N\) ԤԤĽˮΪ \(p_j,~j=1,2,\cdots, N\)ǵƽֵʽ
\[
\bar{p}=\frac{1}{N}\sum_{j=1}^{N}p_j
\label{av}
\tag{1}
\]
\(N\) μ¼УõصʵĴΪ \(n\)ôͨȽԤľֵ \eqref{av} ʵʹ۲⵽Ƶ \(n/N\)Ǽɡ֤ʵ֤αԤݵģͣٿԶԸģ͵ĿɿС

ڳǵ \(\{p_j~|~1\le j\le N\}\) УͬĽű \(j\) ӦʷϲͬʱIJ˿Ϊ \(j\) ǣɢģʱֵ \eqref{av} ǶʱеƽиԤĸʽ 0 1 ֮䣬\(0\le p_j\le 1\)һ棬鿴õʵʵ¼ǿɶЩʵġռֵֻȡ 0 1\(p_j=0\) ʾʵʼ¼δ꣬ \(p_j=1\) ʾʵʼ¼ꡣˣ۲ǰȷԵ \(p_j\) ڹ۲֮󳾰䶨ȡ˾ȷԵĺֵ 0 1Щеġʵʹ۲⵽ĺֵ \(p_j=0,1\) \eqref{av} \(n/N\)Ĺ۲ֵԤֵƽ \(\bar{p}\) ֮Ӧģ͵Ԥ׼ȡ

ˆµķʽ±ֵķĿΪ˽һ½ֵķȽϡ½ֿǵIJͬһص㲻ͬʱ̵ļ¼ͬһʱ̲ͬصļ¼ٶǰעijһϺ񻯣仮ֳ \(N\) С飬Щ֮Сڲ֡ճꡱ֮澰֮ijʱ̣ɢ \(j=1,2,\cdots, N\) ǵҪô鶼꣬ \(p_j\) ռֵΪ 1Ҫô鶼꣬ӦռֵΪ \(p_j=0\)ͬĽű \(j\) ӦŲͬĵص㣬ǣɢĿռǰ۲⵽ռֵ \(p_j\) \eqref{av}óĽ½˵ġ֮ȡ\(n/N\) \(N\) Ϊ񻯲\(n\) ΪзȻʵʹ۲ǰԤǽijģͼص \(j\) ʵֵ \(p_j\)óĽֲͨȷԣ \(0\le p_j\le 1\) ½δͬһƹͣΪģͼֵ \(p_j\) Ҳֻȡ 0 1ϸС𲢲Ӱ챾ۣõģǺǻʱҪֵ \(p_j\) \eqref{av} ʽƽõ \(\bar{p}\) ֵ \(n/N\) бȽϡ

׿ֺ½ֵķΪƣһǶʱƽһǶԿռƽܷʱ任ռ䡱֮佨һȼ𰸺ܿڰǷܹһʵġԼ衱(ergodic hypothesis) ֤֮ȤΪӣԶԶ˱۷ΧҪԽټ򵥵ö࣬漰ֵ \eqref{av}

ע⵽ \eqref{av} ʽͨƽڵǣǰķУΪβøһļȨƽ
\[
\bar{p}=\frac{\mu_1 p_1+\mu_2 p_2+\cdots+\mu_N p_N}{\mu_1+\mu_2+\cdots+\mu_N}~~~~~~~~~(\mu_j\ge 0)
\label{wav}
\tag{2}
\]
\eqref{av}Ϊ⣬ \(j\) ԤġŶȡ\(\nu_j=\mu_j/(\mu_1+\cdots+\mu_N)\)һͬ 0 1 ֮ܺΪ \(\sum_{j=1}^N \nu_j=1\)ҪǿǣŶ \(\nu_j\) ĸߵԤ¼еżȻ⣩زģϵͳģ͵ľ׼޹ء˵ǣԱڼ \(p_j\) ʱ״̬˴򽫴ѹ \(p_j\) ֵĿŶ \(\nu_j\)ΪųżԭƫһȻİ취Ƿƽ \eqref{wav} ʽȼ۵ʹ
\[
\bar{p}=\nu_1 p_1+\nu_2 p_2+\cdots+\nu_N p_N~~~\left\{
\begin{array}{l}
\nu_1,\nu_2,\cdots,\nu_N\ge 0
\\
\nu_1+\nu_2+\cdots+\nu_N=1
\end{array}\right.
\label{nav}
\tag{3}
\]
൱˵ÿԤ۲ԾֵͬҪĹףЩʮֲ׵ĽӦõʵĹˡ

鿴룬ǵͼʵʩýʱҪøβĿŶ \(\nu_j\) ȷֵҪ˽ĹϢͨģ԰DzòȡֶΣԼһ㡰֪֮ĻԱʽũ
\[
S=-\sum_{j=1}^N\nu_j\log\nu_j
\label{shannon}
\tag{4}
\]
ﵽֵݳʶһϵͳԽ󣬶ʧϢԽࡣ

ŶʼԼ \(\nu_1+\nu_2+\cdots+\nu_N=1\) \eqref{shannon} ļֵʱӦ֪ճӷ
\[
\begin{array}{l}
\displaystyle
f(\nu_1,\cdots,\nu_N)=-\sum_{j=1}^N \nu_j\log\nu_j+\lambda\cdot \left(\sum_{j=1}^N\nu_j-1\right)
\\
\displaystyle
\frac{\partial f}{\partial \nu_j}=-1-\log\nu_j+\lambda=0~\Rightarrow~\nu_j=e^{\lambda-1}
\\
\displaystyle
\frac{\partial f}{\partial \lambda}=\sum_{j=1}^N\nu_j-1=0~\Rightarrow~N\cdot e^{\lambda-1}=1~\Rightarrow~\lambda=1+\log\left(\frac{1}{N}\right)~\Rightarrow~\nu_j=\frac{1}{N}
\\
\displaystyle
\left[\frac{\partial^2 f}{\partial \nu^2_j}\right]_{\nu_j=1/N}=-N<0
\end{array}
\]
ʽʾũ \(\nu_1=\nu_2=\cdots=\nu_N=1/N\) ﵽֵ \(\log N\)ֵ \(\nu_j=1/N\) \eqref{nav}Ȩƽ˻Ϊƽ \eqref{av}֪֮֮ĻİʹƽΪ۵Ļ˵ùȥġ

µ˲δϢIJȫڼƽ \eqref{nav} ֮ʱòؼٶȨ \(\nu_j\) ͬ \(1/N\)һƽȨ򡰵ȼʡũصһ£Ҳϡ֪֮ĻֱһھֵʾøáֱʱӦʵĽҡʵϣ˽⵽Ϣ֮ĸʼٶҪDZҶ˹Ļ

϶ἰйؾֵҲɭϵƶûУҵԽԽߵȤһܳ Christensen Utts ʮǰڡͳѧҡ(The American Statistician) Ϸһƪģⷽרң˷Դܿܳһ汾£ij̳ѹĹ˿뿪̳ǰȥϰ齱ϰΪÿ齱Ĺ˿׼ͬĺ֪˿ͣһõĽһδ͸¶齱ǣ˿Ϳȡеһڴ򿪲鿴еǮ֮λ˿ͻһѡȿȡƽֵġþա飬鵽ĺ뿪̳ҲԼһѣѺеǮϤ黹ȡϰһֻ˿ֻһν׵Ļᣬ׺󲻵÷ڣڣ˾ǣ齱ΪԼ󻯣ӦüþأӦϰһν׸

ٶ˿ʹ˳鵽ĺк \(x\) Ԫʱʼ㣺ϰһֻǮ \(\nu_1=\frac{1}{2}\) ļΪ \(2x\) Ԫͬʱ \(\nu_2=\frac{1}{2}\) ļΪ \(x/2\) Ԫһֻ֣ôߵĽֵӦƽʽ㣺
\[
E:=\nu_1\cdot 2x+\nu_2\cdot \frac{x}{2}=\frac{1}{2}\cdot 2x+\frac{1}{2}\cdot \frac{x}{2}=\frac{5}{4}x
\label{cp}
\tag{5}
\]
ֵ쵽 \(x\) Ԫһҵ˼붷齱߾þաƣȻȻشϰ˺

λ˿͵˼̿ͦóĽȴǻģͬĺȡһ˿ȡߵĺϰĺλȫԵȣƾʲôȡһٸһܵóĻԤأ

ľϣڹ˿ʹ˵һ鿴еĽΪ \(x\) Ԫ󣬽һݶϢʱ齱߿йصϢȨӵ \(\nu_1=\nu_2=\frac{1}{2}\) ʹĽΪɿ仰˵Ӧһ㱴Ҷ˹Ϊ˵ \(\nu_1, \nu_2\) ȷڹ۲⵽ \(x\)ðǿһ˵Σٶ̳ϰʲۣΪ \(M\) Ԫ齱ڵһй۲쵽 \(x>M/2\)ôԶ϶ \(\nu_1=0,\nu_2=1\)һ \(x/2\) ԪļΪ 1 \(2x\) ԪļΪ 0ϰĽܳԼʲǻ벻ô˵Σλ˿ϰ̫̫ĹۣЩϰʱ֪ϰ¾ٰ齱ԤΪ900Ԫλ˿ͳ鵽500ԪĺʱӡþաĽȻǵģֻջ 250-_-

ĿǸһͳʾ齱ڵһй۲쵽㹻Ľ \(x\)Ӧñ˺ӦнףȡһȻϺƽֵġϡþաԭͺƽֵԭһʵڳ齱ߵ֪һϢϰۻϰ齱Ԥ㣬ȵȣ֮ǰ޷ȷ \(x\) ﵽֵʱ㡰㹻󡱡

һ򻯵ƽӹģ͡һĽܴһγʱ \(C=H\)ͬһĽҲСһγʱ \(C=L\)Ǵ򿪵һڹ۲쵽ǮΪ \(x\) Ԫ£\eqref{cp} еȨ \(\nu_1\) Ӧ \(P(C=L|x)\) ȷ \(\nu_2\) Ӧ \(P(C=H|x)\) ȷ \eqref{cp} ɱ
\[
E=\left(2P(C=L|x)+\frac{1}{2}P(C=H|x)\right)x
\label{Eav}
\tag{6}
\]
ֵ \(\lambda=P(x|C=L)/P(x|C=H)\)ע⵽ \(P(C=L)=P(C=H)=\frac{1}{2}\)ݱҶ˹
\[
\begin{array}{l}
\displaystyle
P(C=L|x)=\frac{P(x|C=L)P(C=L)}{P(x|C=L)P(C=L)+P(x|C=H)P(C=H)}=\frac{P(x|C=L)}{P(x|C=L)+P(x|C=H)}=\frac{\lambda}{1+\lambda}
\\
\displaystyle
P(C=H|x)=\frac{P(x|C=H)P(C=H)}{P(x|C=L)P(C=L)+P(x|C=H)P(C=H)}=\frac{1}{1+\lambda}
\end{array}
\]
ʽ \eqref{Eav}
\[
E=\frac{1+4\lambda}{1+\lambda}\cdot\frac{x}{2}
\label{Gav}
\tag{7}
\]
ȡ \(\lambda=1\) ൱ز˵ȼʼ \(P(C=L|x)=P(C=H|x)=\frac{1}{2}\)ʱֵ \eqref{Gav} ˻Ϊֵ \eqref{cp}Ϊ˱ǵģͱų \(\lambda=1\)ڡͽ׽ơ£ٶ \(P(x|C=L), P(x|C=H)\) Խʽľܶȷֲ
\[
\begin{array}{l}
\displaystyle
\rho(x|C=L)=\left\{
\begin{array}{ll}
\displaystyle
\frac{1}{X_{\max}-X_{\min}}, & x\in [X_{\min},X_{\max}]
\\
\displaystyle
0, & x\notin [X_{\min},X_{\max}]
\end{array}\right.
\\
\rho(x|C=H)==\left\{
\begin{array}{ll}
\displaystyle
\frac{1}{2X_{\max}-2X_{\min}}, & x\in [2X_{\min},2X_{\max}]
\\
\displaystyle
0, & x\notin [2X_{\min},2X_{\max}]
\end{array}\right.
\end{array}
\]
\(X_{\min}\) \(X_{\max}\) Ԥ趨ٶ̳ϰҵͷԣģпɽ \(X_{\min}\) Ϊһij \(X_{\min}=5\)Ԥ \(X_{\min}=0\) ൱ڼٶϰ岻ؿţּٶϰij齱һĴ̼ԣǿɺԤ \(X_{\max}\) ֵ֮ \(X_{\min}\) \(X_{\max}=20\)£ܶ \(\rho(x|C=L), \rho(x|C=H)\) ķ˷ǿյĽ\([X_{\min},X_{\max}]\cap [2X_{\min},2X_{\max}]=[2X_{\min},X_{\max}]\)ɴ˿ɵ
\[
\lambda=\frac{\rho(x|C=L)dx}{\rho(x|C=H)dx}=\left\{
\begin{array}{ll}
\mbox{δֵ}~0/0, & x< X_{\min}
\\
\infty, & X_{\min}\le x <2 X_{\min}
\\
2, & 2 X_{\min}\le x\le X_{\max}
\\
0, & X_{\max} < x\le 2X_{\max}
\\
\mbox{δֵ}~0/0, & x> 2X_{\max}
\end{array}\right.
\]
ͽ׽µƽӹģѾųֵĿ \(\lambda=1\)һģͣ齱߹۲쵽һĽС \(X_{\min}\le x < 2 X_{\min}\) ʱɰӦ \(\lambda=\infty\) 뱴Ҷ˹ֵ \eqref{Gav}óһֻĽֵΪ
\[
E=4\cdot\frac{x}{2}=2x>x
\]
һֻеĽС༴ \(2 X_{\min}\le x\le X_{\max}\) ʱɰӦ \(\lambda=2\) 뱴Ҷ˹ֵ \eqref{Gav}ǽƵصóһֻĽֵ
\[
E=\frac{9}{3}\cdot\frac{x}{2}=\frac{3}{2}x>x
\]
֡С \(x\)ΣڽԤھڲף齱Ӧѭϡϰ-_-

һ棬һֻеĽϴ󡱣 \(x\) \(X_{\max} < x\le 2X_{\max}\)ô \eqref{Gav} дӦ \(\lambda=0\)һֻĽֵ
\[
E=\frac{x}{2}<x
\]
ڴˡ \(x\)ΣԤСڲף˳齱Ӧáþաеĺ

ͨģ͵ıҶ˹DZ˺۵ij֣׼ؿƽֵġþաԭһǴȻģʵ绹оģ۲ܸƽκλȨʹͬ־ָ-_-
���༭ʱ��: 2022-08-08 11:21:29

加跟贴

笔名:     新网友请先注册笔名 密码:
主题: 进文集
内容: